_AD-A168 994 ERROR BOUNDS FOR NENTON-LIKE METHODS UNDER KANTOROVICH
TYPE RSSUMPTIONS(UY WISCONSIN UNIV-MARDISON MATHEMATICS
RESEARCH CENTER T YAMAMOTO JUL 85 MRC-TSR-2846

UNCLRSSIFIED DARG29-88-C-86841 F/G 12/1

NL




; i 5
\ — E ™ m ,
: TR Al "
‘ ||||=—__— 18
2 s pus
= I= =

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

’t".‘"\"‘" o

R - AP AR SN :
W N w e W el N S Sl - e, Vo AN -n'\‘-
. .

N3 &"S"‘{" _}'\g“} -..~, e X% x{:: : }

ﬁ, B



MRC Technical Summary Report #2846

ERROR BOUNDS FOR NEWTON-LIKE METHODS
UNDER KANTOROVICH TYPE ASSUMPTIONS

Tetsuro Yamamoto

AD-A160 994

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53705

July 1985

(Received July 2, 1985)

Sponsored by

U.S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

OTIC

Approved for public release
Distribution unlimited

85 11

ettt e e R ST S ]
- e Lt DRI ]

DA

G FLECTE

06 049




4-

R

PRl

AT RIS

oh L Co X
PRy .‘3'\.«\ BT A2

RPN, na s g amaeaia o STRPRT I AR Py P

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

ERROR BOUNDS FOR NEWTON-LIKE METHODS
UNDER KANTOROVICH TYPE ASSUMPTIONS

Tetsuro Yamamoto*

Technical Summary Report #2846
July 1985

ABSTRACT
This paper gives a method to derive new a posteriori error bounds for

¥

Newton-like methods in a Banach space under Kantorovich type assumptions. The

bounds found are sharper than those of Miel [10] and include those recently
/ NY Ao OThme
obtained by Moret (12]. The applicability of euwr method is studied for other

types of iterations. Various error bounds for the Newton method under the
Kantorovich assumptlona are surveyed in the Appendix. /?;yanWLV. ‘¢Zb%912;’
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SIGNIFICANCE AND EXPLANATION / i
_“ To find sharper error bounds for iterative solutions of nonlineag h s
equations is one of the important subjects in numerical analysis. This paper
) gives a simple and powerful technique for improving known error lounds for f
Newton-like methods in a Banach space under Kantorovich type assumptions. ﬁ
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ERROR BOUNDS FOR NEWTON-LIKE METHODS
UNDER KANTOROVICH TYPE ASSUMPTIONS

Tetsurc Yamamoto*

1. INTRODUCTION
lLet X and Y be Banach spaces and consider an operator F : D g X+ Y. If F is
Fréchet differentiable in an open convex set D0 C D, then the Newton method for solving

the eguation

F(x) =0 (t. 1)
is defined by

Xpe1 = %y = P ORI, n=0, 1, 2, ..., (1.2)
provided that F'(xn)" € L(Y,X) exists at each step, where L(Y,X) denotes the Banach
space of bounded linear operators of Y into X. Since Kantorovich [6] established his
famous theorem, called the Kantorovich theorem, which guarantees the convergence of the
method and existence and uniqueness of the solution of the equation (1.1), and gave
another proof of the theorem with the use of a majorizing sequence, many authors have made
efforts to find sharper error bounds for x, and establish similar convergence theorems
for the Newton-like method

Xpey = %y - Alx)"R(X,), n=0, 1, 2, ..., (1.3)

where A(x,) is a linear operator which approximates F'(x,).

One of the typical generalizations of the Kantorovich theorem is given by Rheinboldt

[20) on the basis of his majorant principle, which generalizes Kantorovich's majorant

*Permanent address: Department of Mathematics, Faculty of Science, Ehime
University, Matsuyama 790, Japan.

Sponsored by the United States Army under Contract No. DAAG29-80~C~0041 and by
the Ministry of Education, Japan.
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technique for the Newton method. A further generalization of Rheinboldt's result is given

C 4
-y

by Dennis (2], which is stated in an affine invariant form as follows: «

faas

» ¥

THEOREM 1.1. let P : DC X+ Y be Prechet differentiable in an open convex set

Do C D and A : Dy + [(X,Y). Assume that for a point X, € DO' A(x‘,)'—1 exists and for

-:. constants K> 0, L3>0, M>0, £>0, m>0, and n > 0, the following hold:
)
2N -1
" lA(xo) (F*'(x) = F'(¥y))I £ Kix -yl , X, y¢€ Do ’
I
1]
i (k)T A(X) = Alxg)IE L Ix = x )0 + £, x €Dy, (1.4)
K PAGxy) (B (x) - AXE SM X - xd +m, x D,
>,
- - .
s xR g h . Lemct, o=max(t, 228,
Ko
vt ¥ .
h= 3 S 3 (1.5)
oy (1~ -m)
-3
- * _1~/1-2n - -
o A S S
) _ . .
S(xg,t ) = {x e x|nx - xh gt } € by
X | - *
“:: Then the sequence {xn} generated by (1.3) exists, remains in S(xo.t ) and converges to .
._-:; a solution x" of (1.1) which is unique in Dy N B(x,.t) where
L
) t=(1-m+ /(1 ~ m)2 - 2Kn)/K. Furthermore, error estimates
o o ex gttt n=0, 0 2 . (1.6)
_-:
:-: hold, where {tn} is defined by
o]
f(tn)
- 0, 1, 2, o0 .
) to-o, tn+1 tn+q(tn)' n=90, 1% < ) (1.7)
o with
o 1 .2
LN £(t)--2-oxt - (1 =2 -m)t +n , g(t)"‘—l-lot- (1.8)
-
f\
t{. rRheinboldt's theorem {20; Theorem 4.3) corresponds to the case ¢ = 0 in Theorem
v{.‘ 1.1. An improved version for the error bounds of Rheinboldt was obtained by Miel [10]. v
h)
‘I' His technique is applicable to Dennis' bounds (1.6), too, and we obtain
3
i
n" i
K
i -2-
\_1.-
29¢
oy
[
oy ‘
5 }“vy-‘ v )—1 ] \,} oy qv-’, -‘ -y, -;,\
‘:_.-i;,:-_- - {\.ﬁ ,':J.

‘
PSS 9,8 (4 lv*.,\ Sad L‘-&sé &




& . ¢ - t e - t
." ‘ Ix = xnl < ry "y 'xn+1 - xnl & T =< Ixn - xn_1l . (1.9)
; » n+1 n n n~1
)‘ '
:: The last bound in (1.9) is of the form found in Miel [10].
. Recently, with the use of another type of majorizing sequence, Moret ([12] gave a
o
P Jl"' convergence theorem for the iteration (1.3) as well as error bounds, but, under the
) S stronger assumptions than those of Theorem 1.1. In fact, in our notation, he replaced the
)
o condition (1.4) by
»,a IA(xo)-’(A(x) = A(y))¥ < Lix -yl , x, ¥ € Do (1.10)
*
?g and assumed that L ¢ K, M~ K - L and 2h < 1. He has shown by numerical experiments
4
i that his bounds are sharper than the last bound of (1.9). However, no proof is given.
b, .
In this paper, first in §2, we shall present a simple technique to improve the error
55
3 bounds (1.6) under the same assumptions as in Theorem 1.1. It is shown that the results
-1
o thus found are sharper than Miel's bounds (1.9) and include what Moret obtained under
'
;: stronger assumptions. Our technique is simple, but powerful, so that we can improve the
'a error bounds for the other types of iterations which were obtained with the use of
|
o - majorizing sequences. To show this, in §3, we shall consider the following three types of
: ‘ iterations:
1a 1
R A; P(x), n=0, 1 2 ecop (1.11)
5a n
. where ag = 0, @ =n or a =a _, 0 21 and Aan € L(X,¥)»
~_ Xoo ™ % " sr(xn,yn)"r(xn) , n= 1,2, 3, .., (1.12)
‘l
where &F : Do x Dy * L(X,Y); and
l-’i - - Pt -1 = eee
X Xy =% - TUXDTF(X) , n=0, 1, 2 ..oy (1.13)
", wvhere T: DC X+ Y and T is Fréchet differentiable in Dy C D, while the
. differentiability of F is not assumed. Convergence theorems for iterations (1.11) and
X ]
_ (1.12) were given by Dennis [3] and Schmidt (21], respectively. The iteration (1.13) was
2
4 3
Kt
9 :C
Y
-3
.-
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considered by Zincenko (27), Fheinboldt [20) and Moret {12). We shall show that their
error bounds can easily be improved by our method. Furthermore, in §4, we shall
specialize our results to the Newton method and show that our bounds improve the basic
error bounds ([25; Lesma 3) which are obtained from the Kantorovich theorem. Therefore,
from the previous results (24] - [26], we can conclude that our bounds for the Nswton
method which coincide with those of Moret are sharper than those of Miel (11}, Potra-Prak
(17) and Gragg-Tapia (5], etc. Finally, a more detailed comparison will be made in the
Appendix between the various error bounds for the Newton method which have been obtained

by many authors under the assumptions of the Kantorovich theorem.
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2. IMPROVED ERROR BOUNDS FOR (1.3).
Throughout this section, we keep the notation and assumptions of Theorem 1.1.
Furthermore, witnout loss of generality, we assume that x, ¥ Xoeq? since, otherwise we

” L ]
have x, = x and Ixn = x I = 0. Then we have

x' = kg = X -k + Al THER(R) - R(xT) =

-1 * » . "

“Alxy) T F(X) = Flxy) = Flxp)(x" = xp) + {F'Ox ) = Ax} (x7 = x )

1

= =alx )" M) [ [ AMx ) HE (x + t(x = x ) = Frx}x” - x_)at
Xn 0 0 [¢] n n n n

+ A(x )-1{P'(x ) = A(x )}(x' - x )]
0 n n n’ '

Alx ) = Alx) [T + Atxg) ™ (Alx ) - Ax )]

and

-1
IACxy) T (A(x ) = Alxg) b S Ldx = %) + 4 ¢l + 2

*
COKt + 8 =1-m=(1=-2~-m)/1 - 2h
1

*
where we have used the fact that tn <t if n > 0, which is satisfied because of our

assumption. Hence, using Banach's lemma, we obtain

L] -1(K * 2 *
-k M-t -TA) {F1x =% 1€+ (m+m)ix - x i}

-{1¢K * 2 *
(1=t -1) 5~ x 15+ (m + Mt )Mx xnl},

[ 73

where An = lxn - xol. For the sake of simplicity, we put dn = Ix‘_'.1 - xnl,

a =2 +1A, b =sm+M\ , a =2 +It, b =m+ M,
n n n n n n n n

-1,1 .2
o () = (1-a) iz’ e bt (2.1)
and
) =(1-3)"'dx?+t ). (2.2)
n n 2 n ¢
-5
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Then we have vn(t) < ;n(t) for all ¢t > 0 or vn(t) :n(t) for all t > 0.

Furthermore, put On(t) - on(t) -t+4 and zn(t) = :n(t) -t + dn- Then it is clear

~ ® ~ W

that if the equation "n(t) = 0 has positive solutions T, T, such that

» ~ ® - (1]

*
n & T, ¢ then the equation ¢ (t) = 0 has positive solutions v , T, such that

~
A

.t *e L ] L 1 L 1]

* ~ ~
S T, + Inparticular, we have 0 <t <1 T <t if

~ ~
T <1 < T
= n = n

L] L4

0, t) < ;n(t) for t > 0. We first prove that the positive solutione ‘;n and ?n

do exist.

LEMMA 2.1. The equation 3n(t) = 0 has positive solutions so that ¢ (t) = 0 has
positive solutions, too..

Proof. The equation Wn(t) = 0 is equivalent to

1.2 ~ ~ ~
3 K™ - (1 an - hn)t + (1 an)dn 0.

2
Hence, by noting that L + M ¢ 0X and GKtn -2(1 -2 - m)tn +2n = Zth”g(tn) 2

2 Zdng(tn), we obtain

~ -~ -~ 2- -~
D= (1 ‘n bn) 2K(1 ‘n)dn

2
(1-l-m-OKtn) -%K(\-l-un)dn

Hv

2
(1 -2 =m” + ox(zdng(tn) - 2n) - ZUKg(tn)dn

v

= (1 -2-m?- 20m 3 0.

This proves Lemma 2.1. Q.E.D.

LEMMA 2.2. Let 'rn' be the least solution of the equation On(t) = 0., Then we have

* -
Ix - xb§ <1t . (2.3)
n = n

Proof. By lemma 2.1, the equations On(t) =0 and "n(t) = 0 have positive

e ~ R ~ N ~ h® L2 ]

* *
solutions To o L and Tn . tn respectively such that T s Th £ Th < T,

let D be defined as in the proof of Lemma 2.1. Then we have

-6=
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1 =v1 = 2h

» »
lx-xnlst-tn- oK (‘l—l.-m)-‘l:n

1-£-m-oxtn

<
=

ok
1-'§n-Sn
g X
1-a «b +/B .
n n ~
£ X L (2.4)

Three cases can occurs:
(1) The case where An' <t . In this case we have on(t) < ;n(t) for all t > 0 sgo

~ 1)
< tn“ <t."", which, together with (2.4), implies that

* ~ %
that Tt <1
n n

' * 1< L2
x - x L . (2.5)

~ ~ Tk [ 2]
(11i) The case where An = tn and D > 0. In this case, we have LI Tn and the

inequality < in (2.4) is replaced by the strict inequality < 8o that we again have

(2.5).

~ - ~ ®
(iii) The case where An = tn and D = 0. In this case, we have Lot -
?n“ - rn" so that (2.4) means (2.3).

In the cases (i) and (ii), we can algo assert (2.3). In fact, we have
' 1 Ix 1< * 1
x-xn-dngx-xn.’ _on(lx—xn)
or
o (1x 1H>0
n(lx - x ) 2 .

Solving this inequality yields

* * ' * l *®
Ix = xnl £ 'rn or x x 2 'l’n .
By (2.5), the latter is excluded in the cases (i) and (ii). This proves lemma 2.2. Q.E.D.

We gre now in a position to prove the following theorem:

-7-
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THEOREM 2.1. Under the assumptions of Theorem 1.1, we have

i 2(1 -~ a )d
o lx'-xl<t'= LI (2.6)
: n = n 3
1-a ~-b +/(/1-l~b)-2x(‘l-a)d
n n n n n’'n

: 2(1 ~ a)a ]
> ~ % :
{ <T = n_n (2.7) :
T iz ab e/ -5 B2 - -394 ]
n n n n nn N
' .
» *

[l t -tn t -tn -
¢ S Copnie ' e ol SR L N (2.8) :
n+1 n b

STl b e

~

and a,, b,, a. Sn are defined in

where dn = Ix n

a1 "Xt 0 Ve Tt Tty

(2.1) and (2.2}.

Proof. It remains to prove that

From the proof of Lemma 2.1,we already know that

[ B200-2-m?- 20030

80 that we have

5
- 2g(t, )4, :
, LA .
‘. 1~l-m—(L+H)tn*/-:-6 :
" < 2g(tn)th+1 . a n K
" - 24
> 1-!.-m-uxtn+/(1-l-m)2-2cm n+1 )
) ‘
i 2£(t ) q
= n 04 -Ln
vt
< 1-l~n-oxtn+/(1-£-m)2-201(n n+1 .
N J
>
o
!

it}

-
-
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X L £ 2 ) d
. ) [+ (tn t )(tn t ) n )
£ .. .
¥ oK(t -t ) Ve
»
t -t }
. = n a
vt n
n+1
N
where t“ is the largest solution of f(t) = O: 7]
_ ;.
oo 1-2-m+/1-2-m?- 20K ’
t = . Q.E.D.
{ oX :
' N
COROLLARY 2.1.1. Under the assumptions of Theorem 1.1, we have -
] * 1< * <] (2.9) .
x a1 £ Tp n * o
t* t 7
~ Fn#i * v
< -t d t ~t . .
= +
= tn+1 n n+1 K
S
\
Proof. We have from Theorem 2.1 4
* * * * a l
ix - xn+1l < vn(llx - xnl) < on(Tn ) T . i
- * .
t - tn t - tn+‘| -
£ vt d -4 = d . Q.E.D. -
= tn+1 n n th+1 n :
Remark 2.1. In Theorem 2.1, replace the constants K, L, M and m by G, aG, X
1 (1 -a)G and 1 - H respectively, where G > 0, 0 ¢ a g 1, 0 ¢ H < 1. Furthermore, .
-

put An = Ixn - xol ¢ Q“ = 1 - aGAn . Gn = G/Qn and Hn = (H - GAn)/% . Then we have

.

o

1-an—bn-H-GAn and

H - GA [/~ 26(1 - aGA )
" - D1-/1- ~— d }

by Y Y

n G 2
(H - GA )
. ) /26
=11 -— al. {2.10)
g n H
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Y This is Moret's bound (un(lx +1 " xnl) = u (0) 4in his notation). He obtained (2.10) by
?Z & n n
g‘ replacing (1.4) and (1.5) by the stronger conditions (1.10) and Gn/ll2 <12,
.
:g: respectively. Under his assumptions, the bound (2.9) also reduces to Moret's bound
sk
A, B,(1x 4 = x 1), (See (3.4) in his paper.)
2 1,.: As a dual of our principle, we have
b &
21 a - 1" < x <o (tx <o (ix "
¥:: n x ' 3 Ix n+) = o, (1% *n S o lix Xpt? e
B ~
i where vn(t), Qn(t) are quadratic polynomials defined as in (2.1) and (2.2)
respectively. Then vn(t) - ;n(t) +t - dn = 0 always has only one positive solution
," ~ ~ *
N I ‘. Therefore, solvirng the inequality !n(lx - xnl) 2 0 yields the lower estimates
i
kN * ~
:‘ * Ix = xnl 2 T-n '- This is a technique which was first adapted by Gragg-Tapia (5], and

*
later by Schmidt [22] and Miel [11]. If we denote by ;t_n the unique positive solution

*
of Yn(t) = on(t) +t -~ dn = 0, then we have In 2

‘t:n +« Hence, as a dual of Theorem

oy -
RURRR AR E

L. 2.1, we have the following result.

THEOREM 2.2. Under the assumptions of Theorem 2.1, we have

2(1 - a )d
* *

. ® o -x1>t1T = L (2.11)
i R =" A 2
&7 1-a +b +7/(1=-a +b )" + 2K(1 - a_ )a

; n n n n nn

& e 21 - & a_
"-"E > T - . (2.12)
s T ez +b + -3 B2+ 21 -390
"'.f' & n % n 2,'%

e

Next, we would like to estimate the ratio d,,4/d,. For the Newton method, it is

[y

well known that dn+1/dn ¢ 1/2 . Moret {12] obtained under his stronger assumptions that

-1,1
a,, 87 (a) = (1-a6a)"

1 3 Gndn + 1 - nn)dn ) (2.13)

i

where a, G,, H, are defined in (2.10). On the other hand, Miel [10] obtained under the

Y -
\

[} Rheinboldt assumptions that 7e

) n+2 a (2.14)

! - 41 £ 7 NP T .

W
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N Therefore, it would be interesting to compare (2.13) with (2.14). As remarked in §1
L8]
Zw.‘: (cf. (1.9)), (2.14) holds true under the assumptions of Theorem 1.1.
% .
% We have the following result.
&
.,;
L THEOREM 2.3. Under the notation and assumptions of Theorem 2.1, let
q"
P By - 1 - -1 2 -
5*9 pn(t) 3 (1 an+1) (bn + jl; + 2K(1 an+1)t) .
N
L) -1, 1 2

] g, (t) = (1 -a ) (3K +Dbt)
W

and

4 - -1,1 2

:,: tn(t) = (1 .n Lt) (5 K™ + bnt) o
! \' Then we have
&N e,

dn+1 <p (an)dn <q (d ) < r (d ) ¢ v———d . (2.15)

s

{.—, Proof. We have
': - - - -1 - - ' -
o Xopz2 = Xpaq = A O {ROX ) - ROX ) = FUx ) (x o= x)
;4

L] - -

i + R (x)) = Alx ) x o - x )}
__
S Alx_, ) = Ax )T + Alx T AL ,) - AxgD]
1S
‘:."‘ and

’ lA(xo) (A(x ”) A(xo))l £+ Mn-H -a < a, + Idn < 1.
;;'v

4 Hence we obtain

q(d)(r(d).

g
% dn+1 =
The inequality 449 5 qn(dn) is also equivalent to

>0 . {2.16)

1 2 - -
TR - (Y ma 40,2

Now, to prove the first inequality of (2.15), we may assume that dM_1 % 0. Then

Pn(dnsy) > 0 and solving (2.16) yields

] -11=

) I*“”‘b;

AN Y s. SR RN
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W

i3]

)

13y

o - /b2 -

o b +/ b S+ -a o a.,

o 9,2 X "rE
2 n n+t
._P.’

k) -

? which implies that d pn( n+1 + Purthermore, let o Qny /Pl q)e Then
- 1 go2 :
a5 (1= ap49)dp4y =3 %" +ba and
o
e Vyxa?+ba - (1-a_ 4. 40"
S a,(4) - p (4,8 2" n'n nt1’“ne1®  p
3-‘ Paldnet 1 - a
2 1 2 - (&

}% - 72F4," + b4 = (Fa +Db)d
,51 1~a
= n+1
vv"

&
X§
% Yo% (4 - a)
n
- ——1.-—.-_—-— ; 0.,
b3 n+t
‘o
b,
Y
:;; which proves p,(d,,4)d, § q,(d.). Finally, let
-1.K
Vis,t) = (1 ~ L -1 -Lt) (St +m+ Mg) .
o 2
5
o Then, with the use of the majorant theory of Fheinboldt and Miel's technique, we have
o
F,', -
O tn(dn) - .(An'dn)dn

a
[30) n
B! S0 Ve Ve
‘ n n+1 +1 th+1
k)

W a
“ = Yt . n
[
&: n+2 ’tn+'
,pﬂ which completes the proof of Theorem 2.3. Q.R.D.
T
ﬁi Remark 2.2. Under the assumptions of Moret, we have r,(d4,) = ;n(dn)' Therefore,

-~
Pl Theorem 2.3 improves the results of Miel [10] and Moret ([12).
= COROLLARY 2.3.1. Under the assumptions of Theorem 2.3, we have 4 . < 4., provided
3 that a_ s 0.

"."V:‘! n
‘;}f
e
¥

~12=

|5

oy
Y §
-




P En2N

-
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Proof. As in the proof of Theorem 2.3, it is easy to see that the inequality

1 2 > ~
3 ox(th+’) + bn th+1 (1 an_”)th+2 >0

holds. We may again aasume that 4,.q # 0. Then it follows that

2(1 - a__,)vt
ve ntl  n+2 . (2.17)

n+l =
~ ~ 2 ~
bn + fbn + 20K(1 an+1)Vt“+2

Cbgerve that the denominator of (2.17) is positive, since th+2 2 dn+1 > 0. Furthermore,

by a simple computation, we see that the inequality

2(1 -3,
L > 1 (2.18)
~ [~ 2 ~
bn + bn + 20K(1 ‘n+1)th+2
is equivalent to
oﬂtm.z + 2(Ltn+1 + Mtn) <21 =g =-m) . (2.19)

»
However, we have assumed that n > 0 so that t > tn and

OKVE o+ 2(Lt ., + Mt ) < oK(Ve ., + 2t .0)

= “x(tmz + tn+1)

<20Kt.$2(1-!.-n) .

Hence the condition (2.18) as well as (2.19) is satisfied, which, together with (2.17),

implies that th+1 > Ve « Consequently we have

n+2
a (@, (@) ¢ z(a)<Vt""2a <a
et SPRld 04, £ 9, V_—n-ﬂ '
provided that dn #* 0. Q.E.D.

We end this section by pointing out that Moret's bounds follow from Theorem 1.1 if
the condition (1.4) is replaced by Moret's condition (1.10). In fact, under the same

assumptions as in Theorem 1.1, except for replacing (1.4) by (1.10), we have
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I 3

Y

’ B

3

N ) TN -y R - v, x, ¥ €D,

<
o Ve -  ix -
_‘3 lA(xn) (A(x) A(xn))l LLIx xnl s X € D0 .

i

" -1 - - - -

IA(xn) (P*(x) Alx))) ¢ M 1 x xnl +m, xXE€¢ Do .

A vhere

., - - =1 - - =l - - =1
":J. K-(‘l-an) K, L-(1-In)L, H-(i-an)l,
o8 B=(1~3)'"s , a =14 , b =m+m

o n n’ “n n’ n n °

. Therefore, an application of Theorem 1.1 to X, leads to
i
1%

>R . . -j - 2h -

! W oex i gt el B -
[ oK

LY

e 2(1 - a_)a

- - =t . (2.20)
K .= - - - - 2 - .=

“l:: 1 .n bn + /(1 'n bn) 20K(1 .n)dn
58
Ved - - -
A provided that 2h < 1, where h = Ofdn/U ~ 32 . me conditica 2h $ 1 is indeed
A
satisfied. To show this, we compare the function ;n(t) = (1~ ;n)-'(g oxe? + bnt) with

B

-" < - - - -1 1 2 . - 5 -
: another function ¢ (t) = (1-a ) (3 oKke” + Snt) where a =1t , b =m+M . Then

1 - ~ ~

‘&4 ;n(t) £ Qn(t) and On(t) - Qn(t) -t + dn = 0 has positive solutions if a #90,
: since we already know from the proof of Lemma 2.1 that

.
' ‘ ~ -~ ~
lt"l = - - 2 _ -

e D=(1-a Sn) 20K(1 - a_)d_

2
:‘l* 2(1-m-~- c!tn) - 20K(1 - u‘n)dn
ey > (1 -m? - 20k 3 0 .
“ 4 - -»
i)
3:' Hence the equation ‘n(t) - ;n(t) -t ¢+ dn = 0 has positive solutions and

- - 2 _ =
D= (1 a bn) 20K(1 an)dn 20,
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which is equivalent to 2h £ 1. If 6 =1, which is also Moret's case, then the bounds
(2.20) coincide with (2.6) with £ = 0. Therefore, the bounds (2.20) include those of

Moret as a special case. However, if o > 1, then the bounds (2.20) are inferior to the
corresponding bounds of (2.6) in spite of putting the stronger condition (1.10) in place

of (1.4).

Remark 2.3. It also follows from the above arqument that 2h <1 if 2h ¢ 1. This

generalizes Moret's result that 2Gndn/l-ln2 <1 if Z < 1.
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3. APFLICATIONS 70 OTEER ITERATIONS

% The argquments developed in the previous section may be applied to the other type
’_"-e' iterations. Pirst we consider the iteration (1.11) considered by Demnis [3]). He assumed
i that x € Dy , A;‘ exists, "‘0-1'(*0" £n,
Al -
ot 1, (F'(x) = P'(y))} S KIx =yl , x, ye€D,
»
::‘: 8, ( 0)
<1 S P o'
-l. IAo (F*(x) An)l S n
§ +vy Ix, =x, .1 (n 1)
. n jz1 3 Mgt 20
*
'\." 6, s8tm ), s5+28¢1,
5
] (K + 2y)n 1
h = < 3
- (1 - &, - 26)°
> and
"f':, - .
_:;: S(xy +t ) C Dy
‘-O
"y where
+ 1 -/t -
t - (, - 5 - 26) .
“_ K + 2y 0
A
19 Under these assumptions, he proved that the sequence {xn} generated by (1.11) exists,
' * remains in §(xo,t.) and converges to a solution x* of (1.1), which is unique in
/ Dy N 8xg, IELL=B (1 - §)) 4f ' <1 where h' = Kn/(1 - 6% and unique 1n
By
45 - 1-8
«,\\'5 S(x,, ) if 2n' = 1. Furthermore, defining the sequence {t } by
1
e £t )
! tg =0 t =t + 5 s A= 0, 1, 2, cuu,
p- where
™
S £(E) =4 (K + 27)e2 - (1 -8 - 28)¢ +n
0 F) 0 .
"
V! 1 (n =0)
- . PINRPY !
f‘ =8y -8y “Xev)E, (2 1) .
. n n
A
o
9“ -16~ . J
)'\i
A
“
Vo
"
&

5?

. *?}?%:‘L:ii;-)-": -v.?..'ﬂ',] Fa ":'-. 07" "'.'_ . ' 4'.'.&:4‘":. : . L . . "”ff oy (#u.?- .- -: . '-.. : : P IR \-*::"- .
" A "r. h Y . cT e . . Py v 0 e wt < ) ..\ \'
" | v ‘*) A 9

G




49
Hay
b
3
13
o3
vl
p b}
o Dennis showed that
Asﬂ“ - -
,!t 141~ %p0 S Tpeq T 8y
£y
5 and
33 * » 1
g{c Ix = xnl : t - tnl n= °’ ¢ 25 cece (3.1)
. : We can apply our principle to improve the error bounds (3.1). In fact, we have
A ' - = AT F(x) = F(x ) = FUx )(x - x )
Ry * Xn+1 a x *n n n
e n
[N , "
e + (F'(x ) = Ag Mx = x )],
n
{3 Frx ) = A, = {Flx) =P 0} + {0 oA )
: n n n n
:'-:'I A A, {1 +a'a -an}
W a = Mo o By " Ro)
4 n n
P
: and
i A, =Rhg={a, -Px, )+ {Prixy ) = Frixg)} + {Frxg) - A}
% n n n n
-:& Hence we have
b
4 °
; L 12 (8 Kl + i ] . 1
. 3 Kix x, o tEIx =x 0 Ylej 1::‘_1|)x-xn
“ n n _§=1
N Ix =~ xn+1l < - ’
LS n
) 1-6,=6 =FKix, -x0 -y ] Ix;=x,_a.l
j 0" % a "~ 0 RV R
b
w 0
where we understand that Z = 0., Therefore, if we again assume that
. =1
4
.:: dn - 'xn+1 - xnl # 0 and put
-g %n
. a =8, +8 +Kix =xd+Y ] d, .. (3.2)
« n 0 e, e, 0 =1 J=1
& ~
H a =8, +8 +(R+Y)E (3.3)
n n
s a
o In
» b =8 + Kix =-x I +Y a,_. (3.4)
>, n e, n L =1 3-1
. b = 60 +R(e =t ) e, (3.5)
B Y n n n
4
.
‘
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A Then we have

T * - » - ~ L ] -

" %.‘ Ix xnﬂl < 'n(lx xnl) < Qn(lx xnl)

F ~ ~

’:. where ¢ (t) and ¢ (t) are of the forms defined in (2.1) and (2.2), respectively.
Furthermore, it is easy to see that

~ - I o~
D= (1 a bn) 2K(1 a“)dn

-8 =28 - (R+2y)tn)2 - 2(K + 2y)(% -60 °5u - (K 4-1,)1:0l )an
n n

v
.
-h

_g 2 0 -60-26- (K+21)tn) - 2(K + 2Y)g Vtm'
o 812
5 =1 -8 =262 -2x+2ym 0.
i
Therefore, repeating the same arguments as in §2, we again obtain the estimates (2.6) -
9% -
,-).j (2.8) with the a,, by, &, b defined in (3.2) - (3.5).
ooy Next, conaider the iteration (1.12) vhich was discussed by Schmidt [21], [22]. Be
¢S]
St
:) assumed that P is ¥réchet differentiable in D; and for some X4,y € Dy
s §P(x, ,y1)" € [(Y,X) exists. Furthermore, he assumed that, with some constants a > 0,
N b2 0, c>0, the following hold:
Ay
g -
k) l6!'(x1,y1) (F'(u) = P'v))) £ 2alu~-vl, u, Ve Do ¢
%‘“" I6!(x1,y1)-1(ér(u,v) =P (x)) ca(lu=-xt +1v=-x),u v, xeD,
4%
oL Ix, - b, 18 e
vi‘ X, =¥, 0 ¢b, F(x,y,) Fix )l gc,
oa M
: _2ab+e) 1 * _1+ab . _
N heZR2 28 2, e 20 -Td,
ial . (1 + ab)
.
‘-;‘\c - - L
;.,-‘_':, 8§ =8(x,,t =b=~c)CDy,
ALS
.4._5
» Yy =Xy yn-xnxn+(1-ln)xn_,, A, € (0,11, n2 2.
g
&3
s,
i
“' .. -18-

R s R s
- _,jf- 5

-3 RGN TR CAN




Then he proved that the sequence {xn} generated by (1.12) exists, remains in 8 and

converges to a solution x" of (1.1). His proof consists in establishing the relations

*
lxm_1 - xnl s tn+1 - tn and Ix = xnl §t -t (3.6)

where the sequence |t n} is defined by

$ t-b

{ 1 r By=ty=0.,

2y

i (t, - 8 )E(t )

¢ -t -D n n_ .
My n+1 n T(t_ ) - £(8_)
n n

s - - -

4 541 xn”f.n” + (1 Anﬂ)tn , n= 1, 2, 3, coey

13 !

z%’ with £(t) = at? - (1 + ablt + b + c.

:" Under the assumptions of Schmidt, we can improve the bounds (3.6). In fact, -as was
. shown in his paper [21], GP(xn,yn)-1 exists for each n and we have
16

N . -1 . .

o X = x = ORx L,y ) (F(x) - Fx)) = Px )x =x)

T

> -

o +{Frx) - 8B(x_,y )} (x' = x )]

so that

n.“.:. - - -1 . 2 ol
'C: Ix = x .0 e (Ix - x 1) = (1-a) (alx = x 17+ bix =~ x1),
‘:‘: where

» ¢

a = a(lxn - ynl + 2Iyn - x1l + lx1 - y1l) ’ bn = nlxn - ynl

A
. and

.
LELO

-
Ui
!

- A

v () = (1~ an)"(atz +bx) .

o

s v

Therefore, if we put

> o
< e
]
.

&n- a(tn+ In"t1) ’ bn.l(tn'.n) ’

e
N

and

Yy

]
‘1‘

RGERUE i) ae? + 50

L2 AL A

»
i

then vn(t) s ;n(t) for t > 0 and, by the same argument as in §2, we obtain

\"-.".,'.{\{Nﬂ’ )
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e 5T e At

2(1 - an)dn

| ~ ®
T E 3
-n
1-2 +8 +/1-3 +b)l2+4n(‘l-:)d
n n n nn
21 - a)a
*
i $L, - =
§ - - 2 -
‘ 1 ‘n"bn*'/a an+bn) + 4a(1 an)dn
t
: 201 )4
¢ -« - - a
$ix -xlgr = L (3.7)
4 1-a -b +/(1-a -b)" ~4a1-a)a
3
y 2(1 ~2a)a
4 ~ %
S‘I’n - n n
1-3 -5 +/(1-23 -5)%-aa(1-2)a
n n n n nn
{
* *
t -t t -t ,
4: - Y 4, < Ve Y1 St & -
n+1

~ ® ~
The bound I, ¢ the positive solution of Qn(t) +t - dn = 0, is equal to Schmidt's
lower bound u, in his paper ([22).

As the third example, we consider the iteration (1.13) which was considered by

Y e S wn

Zincenko [27), Rheinboldt [20] and Moret [12]). Ilet P be continuous in D and T

be Préchet differentiable on some open convex set Dy & D- Assume that for

' -
: xozDo,'r'(xo)1eL(Y,X) exists and for X > 0 , 0¢8§<1, n>0,
K
‘ 1T () (Tx) - TUYIM S KIx = yE ., X, ¥ €Dy .
! -1
4 IT'(x)” ((F = TH(x) = (F = Ty))) L 8Ix = yl, x, ¥ €Dy,
. -
L4
4 IT (x))” F(x, ) & n
_ and

h = —2 z ﬁ% .

(1 - 8)

L Sl Bl S

=20~

'y_,ﬂ-}ﬁ'cgz ‘-r‘r “n 'y.)‘ 'T .$: "-.-\-,’ J_I{ {{ . TR '\ LT \_: '-".""
. . N A ‘x xn

" n:'l,'la.i.l 4" AR 4N 9
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T

Define t° ana t"*

by
Ll - "l‘“"“n-s) ang ¢'* =1 td1-2n "l‘('z"n-s)

t -
- *
respectively and suppose that S(x,,t ) c Dy Then it is known [27), [20] that the
- *
sequence {xn} defined by (1.13) exists, remains in S(xo,t } and converges to the only
solution x* of (1.1) in Dy N 8lx,t" ).

Rheinboldt proved this by showing that

*
Ixn¢1 - xnl s tn+1 - tn' Ix - xnl £t -t (3.8)

where the sequence {tn} is defined by

with

f(t)-%k’-n-cnw\, glt) = 1 - Rt .

Therefore we can improve the bounds (3.8) on the basis of our principle: For the

iteration (1.13), we have

X = Xper = P x) T MUT) - T - T ) (x” = xy)

+ (F - )(x") = (F = T)(x,)]
so that
L . _ -1.1 L] 2 .
Ix - xn+1l (4 Qn(lx - xnl) = (1 - KAn) (3 Kix -~ xnl + §Ix - xnl)

(1 ~ & )-1(1-le' -x 1?4 Glx. -x1)
n 2 n n @ !

~ *
£ .n(lx - xhl)

where An = Ixn - xol. Hence, an application of our technique yields

e 2(1 - xtn)dn
T =
In >
1+8 ~xt_ + /Q1 +§~-Kt )"+ 2K(1 - Kt )&
n n nn
2(1 - KA )4
<t * . n’n
= -n

1+6 -K\ + /Qi +6 ~ KA )2 + 2K{(1 - KA )d
n n nn

-2t~

y O RN B IE NS .|¥
4 o o ‘ h‘f" .~
.jgi > ’

m.S;E :
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Calefalnl
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A
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4, n e
S

AGRONAG' ANAIAD
o A I A

]
'

]

R

&

2(1 - KA )4
<ix -xM¢cT = B_D
1-6-% +/(1-6-%)2=2%(1 - X&_)4
n n nn
. 2(1 ~ Rt )4
ﬁ‘n" n' n

2
1-6-n;n+/(1-5-n:n) -2!(1-Ktn)dn

* *

t -t t -t .
< Da ¢ 2 q t -t .
= th+1 n = th n-1 = n

The uprer bounds 'rn' coincide with those of Moret, which he derived under the

assumption 2h < 1.

4. APPLICATION TO MEWTON‘'S METEOD

As a special case of the iteration (1.3), we consider the Nawton method (1.2).
call the assumptions of Theorem 1.1 with K=1, { =M=m =0 the Kantorovich
assumptions. Then we obtain the following result.

THEOREM 4.1. Under the Kantorovich assumptions, we have

. 2a

5Hl

-1
1+ 1+2!(1—Ktn) dn

2a
n

/__..__.
1+7/1 + ZKBndn

. 28

% =
1+7/1 +2K(1 -KA ) 4
n n
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; . . oo . [P .y i o g 4a-Ara-gt Wi L o4 o 1‘7‘.“".11.:T‘:".“.'.T':.f“.xtt.‘.!pv.i-cx“T

P 2d
n
(4.4)

A
-
x

]
L3
-

L N

-
[]

&
3% 1+ -2k -x)
' n n

5 . 2dn
£t = (4.5)
. 1+/1- 2X(1 - ke ) 'a
n n

N
{7

(4.6)

G Ay
= Ao

-
+
-t
IREE]
§
-]
(<9
=

NN

VA
)

2 (4.7)

RPN
.
=]
>
-

B
*

n 2
3 %-1 (4.8)

yo
A

k"

' (th)

'

where An - lxn - xol and B, are defined as follows (cf. Kantorovich [6), Rall [18]):

.\
By=1, ny=n, hy=h=FKn,
-
L B n
'{, n=-1 n=1'n=1
: B " T=hH M TTIA SR STk 2t
% n-1 n~1

Proof. The bounds (4.1), (4.3) - (4.5) and (4.7) follow from Theorems 2.1 and 2.2.

The bounds (4.8) are found in Miel [10]. Therefore, it remains to prove that

’
AN

(1 = Kt:n)'1 = B,. Thie fact is implicitly found in Kantorovich-Akilov [8]. However, we

can also prove thias by using the relations

3wt
.

. 2n

t -t =
n

n

and tn+1 - tn - nn )

1+/7~=

e
«

n
which were proved in the previous paper [26]. (See Proposition A.2 in the Appendix of

o} -
L3 3"

this paper.) In fact, we have

L

28

l‘ll"t
ettt
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T

¥
; 2n
A 1em =1 xt' - L)
p 1+ T B
4
N
* 1-/r< 2, 1
=T~ F+ =51,
~‘ Bn n
' since
3
3 J/ h 2 J1-2
% n=-1 n-1
L) nf:ﬁ;- 1.(1_h ) = — =, ..
n=-1 n-1
.
o 1 - 2h0
:; T B 7 - (O-RT ™ B, /1 -2 . (4.9)
e
‘-
This proves (4.2) and (4.6). Q.E.D.
i: Remark 4.1. The bounds (4.4) follow also from the Kantorovich theorem. In fact,

under the Kantorovich assumptions, !'(x“)'1 exist and we have

¢ ; -
e )TN E ) < Byt g (1 kA ) TRix -y, x, v e D,
| and
f 1
4 (1-x8) ¢B , n=0, 1 2 «.. (4.10)
L
5-7 The inequalities (4.10), which we obtained in the proof of Theorem 4.1, follow also by
induction on n:

KA
{ -1 -1
19) " - Mn) s - nn-‘l - xdn-‘l)
W
4 1 1 1
t = - - - - = =
! M-k 071 =XV ~k8 _7d )
5; ¢<B (1-x .a )

A = n-1 n=-1 n-1

e -1

- $B g1 - KB Maey) B .
. Hence we have

1 -
e} k(1 -x8)7d g 2WBA < <t

>
» -24-
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so that an application of the Kantorovich theorem to x, and n = dn leads to the bounds
(4.4). As was remarked in [25), [26], the bounds (4.6) also follow from the Kantorovich
theorem by replacing xp and n in the theorem by x, and 4, respectively. However,
Theorem 4.1 asserts that (4.6) is equal to ?n.- Furthermore, we remark that it is shown
in a series of papers [24] - {26] that the bounds (4.6) are sharper than those of Gragg-
Tapia [5}, Potra-Ptak [17] and Miel [11]. Therefore, under the Kantorovich agsumptions,
the Kantorovich theorem still gives us the best upper bounds. We note that the bounds
(4.4) also follow from Moret's bounds (2.10), provided that 2h < 1. Finally, we note
that Schmidt's lower bounds [22) for the iteration (1.12) reduce to (4.1) and the bounds

(4.2) may be found implicitly in Miel (11].

APPENDIX: ERROR BOUNDE FOR NEWTON'S METBOD UNMDER THE KANTOROVICH ASSUMPTIONS.
After Kantorovich gave a proof of his theorem for the Newton method, many authors
have made efforts to find sharper error bounds under the same hypotheses. In this

appendix, we survey such results and clarify the relationships among them.

[V
3

In 1948, Kantorovich {6] established his theorem by proving that lxn+1 - xnl

n
and
2n n
» n 1 2 -1
ix - x ¥ < < 2n i-ﬁ(m}) n ., (A.1)

I e 2w

where ", and hn are defined in Theorem 4.1. A year later [7], he gave another proof

by showing that

* *
Ixn+1 - xnl < tn+1 - tn r Ix = xnl ¢t - tn ' (A.2)

where the sequence {tn} is defined by (1.7) and (1.8) with o0 =1, £ =m=0, L =K.
Since then, it seems to the author that numerical analysts are convinced that the bounds
(A.2) are sharper than (A.1). However, we can prove [26]) that 2nn/(1 +/1 - Zhn) =

t* - t,- (Undoubtedly Kantorovich had known this fact.) For the sake of convenience, we

give the proof here. We begin by proving the following:
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:,q £(t) =5 Kt® -t +n =0, respectively. Furthermore, set 0 =t /t and
3&§ . -
I. A=t =~t =2/1=2h/K. Then
§- p
‘1.=>v n
2
. 8 m<c
[r . 1-0
s ’.1) t -t -
.‘ n
3 1 {(2h = 1)
o 2"x
and
R
§ } - A
{ t -t = (h < 1) .
P oY n "
‘,ﬁ. 1-9
)
Ay
¥ Proof. This proposition is essentially dus to Ostrowski [16; Appendix Fj. Let
gf* a, = t* - t, and b, = e - t,- Then we have
iy
A
$€f ab ahz ab bnz
‘ Y - - -
Y e WS T 3 TS B T W S 5 ° (R.3)
¥
i b Hence
,, Rl a2 L . (292 . 2
35'\ bn bn_ bo
at and
k“ ' [ 1] [ 4
F) b ~a =¢ -t =4,
;Q which lead to
¥
ik n
2
AB A
‘ % 2" ’ bn = K
X 1-98 1-9
b
LA if 6 <1, If 6 =1, then we have &, = b, and (A.3) implies that
'S
1 1 * 1
, A =ox 8 % memt W, Q.E.D.
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PROPOSITION A.2. We have

t ’

-tngn

n+1 n
- 1-¢1-2hn znn
t -t = —— -
n x.Bn 1+.’1--2hn
and
. 1+‘“'2hn
t -tn- ) ’ n=0, 1, 2, «00¢

That is, t* - t, and ' - t, are the solutions of the equations

1 2
—-— - * .
2KBnt'. t nn'O

Proof. As was shown by Gragg-Tapia (5], we have

n
02“_(1-’__1-211)2‘1'“'2%
1+/1 -2 1+./1--2hn

Hence, if 6 < 1, then we have

2" 1- - 1-/1-=

8 — = 2. B (cf. (4.9)) ,
1 - 82 AN W R
and
; IR T I
- - .
- pm——
1 - o2 2T, 2 /7 - =

Consequently, we have from Proposition A.1

1 =-/1 -2 1-/t-2

e -t .i'_;_ﬂ. n _ -
n B /T- & n
and S — S ———
. Wi VN -aAa Ve
t -tn- x . - n ’
2Bn¢1-21 n
27~
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::X: {f 6 < 1. These relations hold true for 0 = 1, since B, =2" and 2, =1 if
N 8 = 1. Furthermore, we have
*AY - N
:-' thet ~tp = (t = t,) = (t = t,,,)
e
A
A _1-/1—21“_1-/1-2%”
N nn nn-|-1
A
f-ﬁ 1-/1-m 1-n
2 "= e el A&
ey -ﬁ- “n ’
s n
Db
‘.‘;2
e since (1 - hn)/‘l - .- /1 - M, - Q.B.C.
L
et PROPOSITION A.3. The following relations hold:
(&
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?jl 1 1 1
e ¢ 1) nn'f-qﬁ.-/ 2. /. s
L n -
,_ 1=+ (o )% ® +71 -2+ (Kn)
.'\_x 1 = Zhn 2 1 - 02"
-'ﬁ - -1 — (2h ¢ 1) (A.$)
n
Y 1=2n 1+ e2
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a
; vt
n+1 X 1
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Proof. (i) In the proof of Theorem 4.1, it was shown that snh -2h =/1 - 2h  and

B 1= - Kt,, n 2 0. FPurthermore, if n = 1, then we have ¥1 - 2h + (Kn)2 =1 -ha=

n

B,". If n 2 2, then we obtain
52" (1enPetiom oL (1-n 12+ [n T (1 =n )}2
n i=0 i n-1 i=0 i n=1 1=0 i
=0 -m 08 Tie (hn_'an::)z
2

-1-2\+(Rnn_) .

1

This proves the second equality so that we have

2 -1 - -
x"n + /1 - ¢ (mn’ Knn *B Kt a hn)sn B, -

The last relation (A.5) follows from Gragg-Tapia's irelation (A.4). In fact, we have

1 - 6%
Ao - — .
1+ 92

(ii)}) The second relation follows from {(i}). The first relation is well known and is

derived as follows:

£(t)
n+1 n f'(tn)

1
= LS {fle ) ~ e ) - £'qe _ e - 0}

1 2

1-Kt )
n

(b, 4 <E<E)

1
Ty ETE, e,

2

(¢ ~t )" .

- e
2(1 - X ) 'n n=-1
n

(iii) It follows from Proposition A.2 that, if 6 < 1, then

2" AN

1 -6 K

4 Wi-m 1+/T-&
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znn 1+/1 - Zhn
-
t -t
- -—-E(t - t ) = . .- L )2 -
Ta-1 { n n=-1
If 6 = 1, then we have
t' t n 1
- n-
2
.= - 1. > . Q.E.D.
(tn - tn-ﬂ) M-t n-1

Throughout this appendix, we keep the Kantorovich assumptions. Therefore, according
to Ostrowski [15], [16], we can take a constant & 2 2 such that ah = 1. Then, there
exists a unique constant ¢ 2 0 such that a = 1 + cosh ¢ = 1 + 2-1(0' +e ). wecan

prove the following:

PROPOSITION A.4 let a and ¢ be defined as above. Then we have

- ®_ ;"
ez"q sinh ¢ "= e [ " (zZh < 1)

sinh 2“9 .2n’(.zn. - .-2"')

.
(i) ¢+ - tn+1 =

_:‘T.m(.'zn’_.!ﬂ.f-n) (zh = 1) ,
2 o++0 sinh 2%
t' n n
(1) — at) | g2 L 20,
nt+1

Proof. Define the sequence {a } by

a, =a, an-1+eoohzng-2(conh2n".)2.

Then we have un” = 2(°n - 1)2 and unhn = 1. In fact, by induction on n, we have

n hn ah =-h 2

nn n
SpaPpey = 20, = 0 TR Ry s G <
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Therefore
k)
' [ . =1
L) : P 1-/1 -2 ' /o -V/a -2
o 0% = n___ ' n n
3 / - 'R -
! 1+.|_2‘,‘“1 da 4 Ya -2 ;
| ) ,
n=1 n=1 n
A o Cosh 2° ‘9 = sinh 2 9_‘-20_
o cosh 2n71' + sinh 2"719
: ‘
g Furthermore, we have 1
* t h
j A T B . 1
- (
'3, Ve " 1+ Tom T=h veficam ;
] n+1 n+1 ;
.
. hn -1-Ji-21n -ezn.
) 1-hn+v/1-2hn 1+v‘1-mn
K
i
-’ which proves (ii). To prove (i), we cbserve that
[ K
A 2 H
;-i-f1-2h-2/u(u-2)-2|lnhq. 7
j ) Hence, we obtain from (ii) and Proposition A.1, -
-2, n ;
J * - ¢
h t -t '(2liﬂh')“ o -‘2'—.-12}-‘—!—-'\, 3
n+1 n+1 n
1= .-2 ’ sinh 2
.' provided that ¢ > 0 . Q.E.D.
k)
! Ramark A.1. Ostrowski {16] chose a constant a 2 2 such that ah 1. Then the
n n .

above proof implies that anhn <1 and 02 < .-2 ®  where the equalities hold if and ]

only if ah = 1. Therefore, the best choice of a is & = n~t.

PROPOSITION A.5. We have

> v ..

n
M- E) (1 -, n>0.
=, noE Ny =

-3f= ¢

AP 2" I N R S P e .
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Proof. Define the sequences {a } anda {8 ]} by

. 1
8, =8t .i”-”-x"

1 2" 1 —
Ga'z—n;(“fi's) .ln'r(l-li-mn), ng?.
n

Then, they satisfy the recurrence relations

= =2 2 et 2
cn 2 un-i P) Bn }-nn__‘an_‘ + N2 1.
In fact, we have
1=-h / h 2
n~1 n-1 1
g = (1-1-(__._)- (1 - h __ -/|-a,-)
n lln_1 1 hn—‘l Dn-‘ 1 n-1
x 1--a 2
n=-1 n-1 1
-_’—(_ﬁ—;_—) -Inn-"l’l-"nz1.
n-

Purthermore, we have ;'nnd g 2, Bence, by induction on n, we cbtain

a2 Bn' n 2 0. Q.E.D.

PROPOSITION A.6. We have

2
Kdn+/1-2h¢(ldn) 5/1-zn+(un_‘) e n 21,
where d, = h:m_1 - xnl.
Proof. As a special case of Theorem 2.3, we have
- -1 1 2 22y ) 2 _ 1 2
4 & (V= ay) TMh S -8 Kt B

vhere a = Kix - x 1 and a = R . Hence, we obtain from Proposition A.3 (1)

0 n
M, M, )
a < < = ’ (A.6)
21 - 2+ (B ) 1o+ (xa )
since 4 < n . It follows from (A.6) that
_ 2 _ 2 - 2
1 -+ (ma_) K-z an?, (A7)
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The expression in the parenthesis in the left-hand side is non-negative, since we have

a $'% d _y from (A.6). Therefore, (A.7) means that
Ji-me a2 -xa >/1-m+ (xa)?,
n-1 n= n
This proves Proposition A.6. Q.E.D.

On the basis of Propositions A.1 - A.6, we have the following chart of the upper
bounds for the errors of the Newton sequence {xn}, provided that the Kantorovich
asgumptions are satisfied:

1 2"%-1
-7 (2h) n (Xantorovich [6])

n
2=— (1 -/T=2?  (Dennis (1], Tapia (23])
2"x
2 1-/T-=m
2 = - = 2 (Kantorovich [6))
1t +/17-2n n

- t' - tn (Kantorovich [7])

Gn 2“
® e (1 - Ji - Z) (0, = 1, o =
I x 0 n

2
an—1

2“-1/1 ~ 2h + on_1(1 -/1 - Zh)2

(Rall - Tapia [19])

n-1)

2" sinn,

e =7 " (& < 1)
sinh 2" ¢
2" (2= 1) (h™ = 1 4 cosh ¢, 9 2 0) (Ostrowski [15])
n
2 02
-K-m —-—-zn (2h < 1)
1-9
1-n * we
2 "n (=) (6 =t /t ) (Gragg-Tapia (5]))
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185 n
a4
)
z-'z:::? res
= 0 dn-‘l {(Gragg-Tapia [5]) -
s
“‘.; t' t
:-.‘. n
& \.: = ——Vt_— dl‘l" (n.l [10])
A9 n
s 1 2":\ \
[ ~a ( ) 4,
WY n=-1 1,+H-En
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! _ ™, \
B e/ Tmm
Xn
- n-1 a
/ 3 n-1
1T-2a+ (K )" +/1 -2
xa 3 )
: (Potra-Ptak {17])
/1 -2h + (m“_1)2 +/ M-
2
N mn-1
= +v/1-2h
)
KB 4 2
- n n~1
1+7/1 - Zln
", 2 v a
"‘Ae 41 (zh < 1) b=t -t
2 2
.| (2h = 1) (Miel (11])
n n=-1 .
*
t -t 2
- dn-‘l (Mie) (10])
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